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Abstract 

We define a new cohomology for associative algebras which we compute for algebras with 
units. 

1. Introduction: Definition of the basic cohomology of an associative algebra 

Let d be an associative algebra over K = R or @ and let &t,ie be the underlying 

Lie algebra (with the commutator as Lie bracket). For each integer IZ E N, let P(d) 

be the vector space of n-linear forms on d, i.e. C”(d) = (J@‘” )*. For w E Cn(&) 

and t E Cm(&) one defines o.r E V+“(d) by 

W.Z(A1,...,An+m) = O(Al,...,An)Z(An+l,...,~n+~), VA E 22. 

Equipped with this product, C(d) = @, C’(d) becomes an associative graded 

algebra with unit (Co(&) = W). One defines a differential d on C(d) by setting for 

w E P(d), Ai E d, 

do(At,...A+l) = 2 (-l)ko(A,,...,Ak-,,AkAk+l,Ak+2,...,An+l). 
k=l 

Indeed, d is the extension as antiderivation of C(d) of minus the dual of the product 

of A? and d2 = 0 is then equivalent to the associativity of the product of z.zJ. The graded 

differential algebra C(d) is together with a bimodule ~62 the basic building blocks of 

the Hochschild complex giving the Hochschild cohomology with value in A?. Here we 

* Corresponding author. E-mail: flad@qcd.tb.u-psud.fi. 
’ Laboratoire associe au C.N.R.S. 

0022-4049/96/$15.00 Copyright @ 1996 Elsevier Science B.V. All rights reserved 
SSDI 0022-4049(95)00166-2 



40 M. Dubios-Violette, T Massonl Journal of Pure and Applied Algebra 114 (1996) 39-50 

do not want to introduce bimodules like A?‘. However it is well known, see below, 

that the cohomology of C(d) is trivial whenever d has a unit. Nevertheless, there 

are two classical cohomologies which can be extracted from the differential algebra 

C(d), namely the Lie algebra cohomology of &Lie and the cyclic cohomology of d. 

In fact, let Y : C(d) + C(d) and 9? : C(d) + C(d) be defined by 

(,4po)(Al, . . ..A.) = c ~(71)~(A,(l),...,An(n)) 
nE% 

and 

(qo~)(Ai,..., A,) = c a(y)w(A,(i),. . . J,(n)) 
YES” 

for o E P(d), Ak E d and where Yn is the group of permutations of { 1,. . . , n} 

and V,, is the subgroup of cyclic permutations. One has Y o d = 6 o Y where 6 

is the Chevalley-Eilenberg differential so (Im 9,6) is a differential algebra whose 

cohomology is the Lie algebra cohomology H(&Lie) of the Lie algebra -Perie [3, 6, 

51. On the other hand, see Lemma 3 in [4, part II] one has 55’ o d = b o 97 where b is 

the Hochschild differential of C(&,&‘*) so (Im%?, b) is a complex whose cohomology 

is the cyclic cohomology HA(&) of d up to a shift -1 in degree [4] (it is worth 

noticing, and this is not accidental, that the same shift occurs in the Loday-Quillen 

theorem [7]). 

We want now to point out that there is another natural non-trivial cohomology which 

may be extracted from the differential algebra C(d). This cohomology is connected 

with the existence of a canonical operation, in the sense of Cartan [2, 51, of the Lie 

algebra &Lie in the graded differential algebra C(d). For A E d = &Lie, define 

iA : Cn(&) + C-l(&) by 

n-1 

i~m(Al,..., An-l) = C(-l)kw(A,,...,Ak.A,Ak+l,...rAn-l) 
k=O 

v’o E C”(d), VAi E &, for n > 1 and iAC’(&) = 0. For each A E &‘, iA is an 

antiderivation of degree -1 of C(d) and one has, with LA = iAd + diA, iAiB + iBiA = 
0, [LA, iB] = i[,Q], [LA,LB] = L[,QI which are the relations which characterize an 

operation of &Lie in C(d). Notice that then, for A E &‘, the derivation LA of degree 

0 of C(d) is given by 

LAW(AI,... ,A,)=&(A l,...,[Ak,Al,...,A,) 
k=l 

for o E P(d), Ai E &. An element w E C(d) is called horizontal if iAm = 0 for 

any A E ~2, it is called invariant if LAW = 0 for any A E d and it is called basic if it 

is horizontal and invariant, i.e. if iA = 0 and LAW = 0 for any A E d. The set C&S?‘) 

of horizontal elements of & is a graded subalgebra of C(d) which is stable by the 

LA, A E &. The set Ci(Se) of invariant elements of & and the set Cm&) of basic 

elements of & are two graded differential subalgebras of C(JZ!) (Ca(&‘) c Ct(&)); 

their cohomologies Hi(&) and &i(d) are called the invariant cohomology and the 
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basic cohomology of &. As already claimed, if ~2 has a unit then the cohomology 

H(d) of C(d) is trivial and it turns out that the same is true for the invariant 

cohomology; one has the following proposition. 

Proposition 1. If d has a unit, then one has H”(d) = 0, H;(d) = 0 for n 2 1 and 

HO(&q = Hp(-Qe) = K. 

Proof. Let 11 be the unit of ~2 and let us define for n > 1, h : C”(d) + C+‘(d) 

by ho(Al,...,A,_I) = -o(ll,Al,..., A,_,), for o E C”(d) and Ai E ~2. One has 

(dh+hd)o = o and (LAh-hLA)o = 0 for w E Cn(~) and A E d. It follows that h is 

a contracting homotopy for C+(d) = &i Cn(&‘) and for C,‘(d) = en>, C~(JZZ), _ - 
which proves the result. 0 

The basic cohomology Ha(&) is however non-trivial. In fact, it is already non-trivial 

for ._& = K. 

Proposition 2. The basic cohomology Hi of K is the free graded commutative 

algebra with unit generated by an element of degree two; Hik(W) = K,Hgk”(K) = 0 

and HB(K) identifies to the algebra W[X2] of polynomials in one indeterminate X2 

of degree two (X2 being identijied to a non-vanishing element of Hi(D6)). 

Proof. C(W) can be identified to W[X] and coincides with Ci(W) since Li = 0. One 

has il = 0 on the elements of even degrees and ii # 0 on the non-vanishing elements 

of odd degrees. Therefore, C,(W) = ek C2k(W) = W[X2] = Hs(K). 0 

One sees that the basic cohomology of E-6 coincides with its cyclic cohomology [4]. 

This is however a little accidental since, as we shall see, the basic cohomology of alge- 

bras is not Morita invariant. The basic cohomology of algebras is of course functorial, 

one has the following obvious result: The basic coholomogy Hs is a contravariant 

functor from the category of associative algebras into the category of graded asso- 

ciative algebras. 

It is worth noticing here that one has CA(&) = 0 and therefore HA(&) = 0 for any 

associative K-algebra &. 

In the next section we shall describe HB(&) for an arbitrary associative K-algebra 

d with unit. 

2. The basic cohomology of unital algebras 

In this section and the following one, & is an associative K-algebra with a unit de- 

noted by 11. Let 9i(&Li,) denote the space of ad*-invariant homogeneous polynomials 

of degree n on the underlying Lie algebra &Lie of d. We shall prove the following 

theorem which generalizes the Proposition 2 of Section 1. 

Theorem 1. The basic cohomology HB(&) of Caz identifies with the algebra Ys(dLie) 

of invariant polynomials on the Lie algebra &Lie where the degree 2n is given to the 
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homogeneous polynomials of degree n, i.e. HP(&) 1: 9l(&Lie) and H?+‘(d) = 0. 
In particular, HB(&) is commutative and graded commutative. 

The complete proof of this theorem will be given in the next section; here we 

just outline the main ideas of the proof in the case where d is finite dimensional (for 

notational simplicity). In this case, C(a) is just the tensor algebra T(.&*) over the dual 

space xZ* of ~2. We use a familiar trick in equivariant cohomology [l, 21 to convert the 

operation i into a differential 6. Namely, consider T(d*) as a subalgebra of S(&*) @ 

T(d*) where S(&‘*) is the symmetric algebra over d* and define the endomorphism 

6 with s(Y(&*) @ m(&*)) c Y+‘(d*) @ Tn-‘(a!*) by 6 = C, p(ea) @J ie, where 

(e,) is a basis of & with dual basis (e’) and where p(e’) denotes the multiplication by 

ea in S(&*). Then, since ieEies +i,i,z = 0, one has ?I2 = 0. One extends the differential 

d of C(d) = T(&*) to S(d*)@ r(&*) by ids(d*) @d which we again denote by d. 
The differentials d on 6 do not anticommute; however Sm(&*)@Tn(&*) is canonically 

a subspace of Tm+n(&*) = Cm+,(&) and if Xm,” = (Sm(&‘*) @ m(&*)) n C,“t+“(&) 

denotes the invariant elements then the algebra 4 = @9m,n is stable by d and by 6 

and these differentials anticomrnute on 9. It is easy to show that the d cohomology of 

4 satisfies Hm,“(9,d) = 0 for n > 1 and Hm,‘(9,d) = $(&Lie). Let CY be a basic 

cocycle of & of degree n 2 2. This means that tl E X0,” satisfies du = 0 and 6a = 0. 

From the triviality of the d-cohomology, it follows that there is a cc0,n-1 E Xo+-1 

such that CI = dw”J-‘. Now either n = 2 and then 60~3’ E 9;(9r,ie) or if n > 3 one 

has 6cr = ddwOJ-’ = -dSwO*n-l = 0 which implies, in view of the triviality of the 

d-cohomology, that there is a e&n-3 E 91,n-3 such that 8ti0,n-1 + do.&n-3 = 0 and 

thus one has a tower 

0 = 6Wk,n-2k-l + &,k+l.n-2k-3, 

which ends by &I$‘-‘~’ E S,P(&Li,) if n = p 2 and by zero if n = 2p + 1. By using 

again the triviality of the d-cohomology of 9 in appropriate degrees, one sees that 
c1 + c,O,n--l + . . . ,+n--Zk--l _+ . . . are well-defined maps in cohomology, i.e. that by 

denoting by H(61d) the b-cohomology modulo d of 9 one has chains of mappings: 

2P 
HB (4-H 

o,2P-1(+j) + . . . + Hk2(P-k)-‘(+j) + . . . 

. . . 4 HP-l,l(Gld) + S,P(&Li,), 

Hip+‘(&) + H”‘2p(61d) -+ . . . -+ Hk,2(p-k)(6jd) + . . . + 0. 

We shall show in the next section (Proposition 4) that the &cohomology HmV”(9,6) 
vanishes for m 2 1. This implies that one can climb up the above tower and that, 
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therefore the above chains of mappings are in fact chains of isomorphisms. Concerning 

the last result on the &cohomology of 9, we remark that it would be easy if instead 

of T(&*) one has the exterior algebra /i(&*) and the idea of the proof is more or 

less to project on the latter situation. In any case see next section for the proof of the 

theorem. 

By applying Theorem 1 it is easy to compute the basic cohomology for specific 

examples of algebras .~4. For instance, if d is a commutative algebra with unit, then 

HP(&) is the space of homogeneous polynomials of degree n on d and Hz+’ (A%‘) = 

0, so with obvious identifications (for the degrees) Hu(&) is just the algebra of polyno- 

mials on d. If JZZ is the algebra MP(@) of complex p x p-matrices, then @‘(M,(C)) is 

the space of homogeneous invariant polynomials of degree n on the Lie algebra g&(C) 

of GL,(@) and HB 2n+1 M (@)) = 0. Thus, HI@&(@)) is the free graded-commutative ( P 
(in fact commutative) algebra with unit generated by elements Xk for k E { 1,2,. . . , p} 

with Xk of degree 2k (Xk corresponds to an indecomposable homogeneous invariant 

polynomial of degree k on gZ,(@)). Since HB(M~(C)) depends on the integer p, one 

sees that the basic cohomology is not Morita invariant. 

3. Proof of the theorem 

Let Pm*” denote the space of homogeneous polynomial mappings of degree m of 

&’ in P(d). The direct sum 9 = @,,, Pm,n is an associative bigraded algebra in 

a natural way. One defines the total degree of an element of 9,m,n to be 2m + n; 9 
is a graded algebra for the total degree and C(d) = @, 9’“,n is a graded subalgebra 

of 9. The composition with the differential d of C(d) is a differential, again denoted 

by d, of the graded algebra 9 which extends the differential d of C(d). One has 

dP’“>” c SF”,“+‘. By using the operation A H iA, one can define another differential, 6, 

on 9. Namely, if w E 9 is the polynomial mapping A H OA of d in C(d), then 60 is 

the polynomial mapping A H (60)~ = iAwA of J&’ in C(d). One has 68”~” c g,m+l,n-’ 

so 6 is of total degree 2- 1 = 1 and the fact that 6 is an antiderivation satisfying h2 = 0 

follows from the fact that, for any A E d, iA is an antiderivation of C(d) satisfying 

ii = 0. Notice that Cf;(&‘) is the kernel of 6 1 C”(d) = .9°,n (: P”,n + L@,n-‘). 
As a vector space, Pm,” can be identified to the subspace of elements of P+“(d) 

which are symmetric in their m first arguments: For w E 9nt,n, A H UA, there is a 

unique tW E C m+n ZZ’ symmetric in the m first arguments such that ( ) 

W&I,..., A,) = {,(A ,..., A,Al,..., A,), VA,Ai E &‘. 

Let Ym,n denote the subspace of 9’,m,n consisting of the o E .9’m,n such that r, E 

C;“+“(d), (i.e. such that &,, is invariant). 4 = @Y w is a graded subalgebra (also 

a bigraded subalgebra in the obvious sense) of 9 which is stable by d and 6 and, 

furthermore, d and 6 anticommute on 9. 
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Notice that one has F,’ = Xt(&r,ie) and Y”,” = C;(d) and that C;(d) is the 

kernel of 6 1 C:(a) = 9°,n (: Y”,n + 91+-l ). The algebras 9’ and 9 are bigraded 

and d and 6 are bihomogeneous, therefore the d and the 6 cohomologies of .Y and 9 

are also bigraded algebras. By using composition with the homotopy h of the proof 

of Proposition 1 and by noticing that 9 is stable by this composition, one obtains the 

following generalization of Proposition 1. 

Proposition 3. One has Hm,“(Y,d) = 0,Hm,n(9,d) = 0 for n > 1 and Hm,O(.Y’,d) = 
Yrn,O, Hm’O(9,d) = Yrnjo = Xz(&Lie,J. 

Concerning the cohomology of 6 one has the following result. 

Proposition 4. One has Hm,“(Y, 8) = 0, Hm+(9, 6) = 0 for m 2 1 and H”,“(9, 6) = 
C;(d), H”,“(Y,6) = C;(d). 

Proof. The last part of the proposition (m =0) is obvious since one has H”,“(9, 6)= 
ker(b 1 F(d)) and H’,“($, 6) = ker(b 1 C;(d)). Therefore, from now on, assume 

that one has m > 1. Define a linear mapping 8 of g in itself with e(9m+) c Ym-l,n+l 

by 

d 
(~~)‘4(Al,...,Afl) = --o dt A+t4,(A2,...,An+l)lr=O 

for o E 9m,n. One has (68 + 6’6)~ = mw + Xo where S&‘W is given by 

n+l 

(~WMAl,...> -4) = c (-1Y@4(~2 ,..., -4,-l,Al,A, T..., A) 

p=2 

(o E Pm,“). Notice that if o is such that w~(At,. . ,A,) is antisymmetric in Al,. . . ,A,, 

then YFW = no and therefore 6’ gives an homotopy for such o. q 

The following lemma, which is a combinatorial statement in the algebra of the 

permutation group, will lead to an homotopy for the general case. The proof of this 

lemma (which is probably known) will be given in the appendix. 

Lemma 1. One has on Ym,“, nizi(X - p ‘d - I ) - niii( Z - p id) = 9, where 94~0 is 
given as before (antisymmetrisation) by (L7w)A(Al,. . . ,A,)=CrrEYn ~(xn)w~(A,(~), . . . , 
A,(,)), i.e. (9’w)~ = YEA. 

Let o E pm,” with m 2 1 be such that 60 = 0. Then 6/w = mo + S&W, so 
one also has SA“w = 0 and, by induction, ~&PO = 0 for any integer p, i.e. one 

has 6P(X)w = 0 for any polynomial P. Define w, E F”J’, for Y = 1,2,. . . , n, by 

wl=w, wz=Xw-(n-2)w,..., wr=~~=2(~-(n-p)id)w,...,w,=~(~- 
id)...(X-(n-2)id)w. One has 680, = mw,+*w, = (m+n-r- l)wr+wr+l, i.e. 

or = M 
f% 

> 

Wr+l 

m+n-(r+l) -m+n-(r+l) 
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for Y < 12 - 1. This implies that 

( 
n-1 

w = iv c (-l)Tf’ 

r=, rIl,+=:(m + n - /* 1 

(-1) 

- n”,&l + Iz - p)w= 

On the other hand, it follows from the lemma and the previous discussion (antisym- 

metry) that o, = M(( l/(m + n))w,) and therefore one has an homotopy formula, for 

w E F’9n with m > 1 satisfying 6w = 0, of the form o = 66’0 where 6’ = GoQ”~“(X) 

and where the polynomial Q”,” 1s easily computed from the previous formulae. Since 

8 and ~9 preserve 9 this achieves the proof of Proposition 4. 0 

The proof of the Theorem 1 will now follow from H”~“(9,d) = 0 for II 2 1, 

Hm+(.f, S) = 0 for m > 1, 

H”‘O(Y, d) = Y:(&Lie) and Ho7”(9, S) = C;(d) 

by a standard spectral sequence argument in the bicomplex (4,d,6). 

Let H(61d) denote the b-cohomology modulo d of 9, i.e. 

Hm9n(61d) = Zm,n(61d)/Bm+(81d), 

where Zm*n(81d) is the space of the czmJ’ E 9m,n for which there is an am+‘,+2 E 

.Ym+‘,n-2 such that 6~~3” + damf’,n-2 = 0 and where Bm,n(bld) = SYrn-‘,“+’ + 
dYm~“-’ (C Ym,“). With these notations, one has the following result. 

Proposition 5. One has the following isomorphisrns: 
l Hip(&) 2 Hk’2(‘-k)-1(61d) II $:(&Lie) for 1 < k 5 p - 2, 

. HB 2P+‘(S) 1: H”2(‘-k)(61d) 2 0 for 1 5 k 5 p - 1, Hi(&) N cFi(&Lie), 

l Hi(&) E 0 and Hi(&) N St(Se,,). 

Proof. Let ~~~~ E Ym,n be a S-cocycle modulo d, i.e. there is a ~l*+‘x”-~ E 4m+1,n-2 

such that &m++dcxm+1,n-2 = 0. By applying 6, one obtains 8d~m+1,n-2 = -d8tImf1,n-2 
= 0; therefore, if n 2 4, there is in view of Proposition 3 a czmt2,n-4 E 4mi2%n-4 such 

that &xmt1,n-2 +dccm+2,n-4 = 0, which means that txm+1,n-2 is also a S-cocycle modulo 

d. If am,n is exact, i.e. if there are pm-‘,“+’ E 9m-‘,n+’ and pm,n-l E 9m,n-’ such 

that am*” = Sfim-‘.“+’ + d/3m,n-1, then d(ccm+1,n-2 - cS~~,~-‘) = 0 which implies, 

again by Proposition 3 (since n - 2 2 2 > 0), that there is a pm+1,n-3 such that 
~mf’,fl-2 = dpm,n-1 + dgm+l,n-3, i.e. mm+l,n-2 is also exact. Therefore, there is a 

well-defined linear mapping 8 : Hm,‘(81d) + Hmt1,“-2(61d) for n > 4 such that 

a[~“,“] = [z~+‘,~-‘]. Let now ~l~+‘,‘-~ E 9mt1,n-2 be a b-cocycle modulo d, i.e. 

there is u”+~,*-’ E .Ymt2,n-4 such that &mt1~n-2 + d~mt2~n-4 = 0. By applying d, 
one obtains ddccm+1,n-2 = 0 which implies, in view of Proposition 4, that there is 

a am,n E Ym,” such that 6clm,” + dcP+1,n-2 = 0. This means that 8 is surjective. 

Assume that [~l~+‘,~-‘] = 0, i.e. CL~+‘,~-’ = S/?m,n-l + d/?m+1,n-3 (/I E Y); then 

one has ~(cI~,” - dfim,n-’ ) = 0 which implies that [u~,~] = 0 if m > 1 or that 
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&n _ qp,“-1 E Ci(@‘) if m = 0, again by Proposition 4. Thus, 8 : Hm*n(dld) + 

Hm+‘~“-2(61d) are isomorphisms for n > 4 and m 2 1 and, for m = 0 (n 2 4), 

8 : H”T”(61d) + H 1,n-2(c31d) is surjective and its kernel is the image of C;(d) = 

H”,“(9, 6) in H’p”(61d). 

On the other hand, if a’,” E go,” is a &cocycle modulo d, i.e. &x’,” + da1+2 = 0, 

then du”,n E Cfl+‘(&) is a basic cocycle of & i.e. da”,” E Z;t+‘(&‘) and if a”,n is 

exact, i.e. sol” = db”9” with p”yn E Y”,n, then da”,” = 0. Therefore, with obvious 

notations, one has a linear mapping d ’ : H”,“(61d) + H;+‘(d), d”[a”,“] = [duo,“]. If 

.z”+l E Ci+‘(&‘) is closed, i.e. z”+l E Zi+‘(&) then, in view of Proposition 1, there 

is a ~l’,~ E C,“(d) = 4’,” such that z”+l - dcl”+; one has d&co,” = 0, which implies - 

that a’,” is a S-cocycle modulo d if n > 2 (by Proposition 3). Thus, d” is stujective 

for n 2 2 and one obviously has ker(d#) = image of C;(d) in H”,“(61d). Applying 

this for n 2 4 and the previous results, one obtains isomorphisms: 

Hip(&) N Hk,2(p-k)-1(61d) for 1 5 k 5 p - 2 

and 

Hzp+‘(d) N Hk,2(p-k)(61d) for 1 5 k 5 p - 1. 

Thus, to achieve the proof, it remains to show that one has: 

(i) Hm,2(61d) = 0 f or m 2 1 and H0,2(61d) = image of C;(d), 

(ii) Hm,3(bld) N 9Ff2(&Lie) f or m 2 1 and H”J(Gld)limage of C;(d) N 9g(&Lie), 

(iii) Hi(d) N YA(&Lie) (remembering that CA(&) = 0). 

Let amp2 E 9m,2 be a Scocyle modulo d; then (since dcF1,’ E 0) am,2 is a 6- 

cocycle, i.e. 6~~~~ = 0, which implies, by Proposition 4, that mm,2 E &%m-l~l for 

m 2 1 and, for m = 0, mop2 E C;(a) = H0,2(Y,b). This proves (i). 

Let czm,3 E Ym,3 be a b-cocycle modulo d, i.e. there is a ala+‘,’ E 4m+1,1 such 

that &m,3 + dum+‘pl = 0. Then one has 6am+‘*’ = Pm+2 E 9gf2(&Lie) = Ym+2,0. If 

~~~~ = 15/?“-‘,~ + dprn,:! for pm-‘” E 9m-‘,4 and pm,’ E qrny2 (i.e. if amp3 is exact), one 

has d(am+‘sl - S/?m,2) = 0 which implies, by Proposition 3 and by d9mf1,0 = 0, that 

arn+lal = Sprns2 and therefore 6~ m+l,l = Pm+2 = 0. Thus, there is a well-defined linear 

mapping j : Hmp3(61d) -+ Y’J+2 (&Lie), (j([LXm’3]) = Pm+‘). Let P m+2 be an arbitrary 

element of 9r+2(&Lie); then, by Proposition 4, there is a urn+l,l E Ym+l,’ such that 

&xm+‘,’ = Pm+2 and, since dPm’2 = 0, one has Gdam+‘,’ = 0 which implies again 

by Proposition 4 that there is a ama such that Sum,3 + dam+‘,’ = 0. This shows that 

j is sutjective. If 8~?+~,’ = 0, then, by Proposition 4, all+‘,’ = 6pm,2 and therefore 

6( LPJ - dpm,2) = 0 which implies again by Proposition 4 that am,3 = bpm-1,4 + dpm,2 

if m 2 1 and, for m = 0, cl”a3 - d/?Oy2 E Ci(&). This proves (ii). 

Finally, let z2 E C:(d) be a basic cocycle, i.e. dz2 = 0 and 6z2 = 0; then z2 = da’ 

for a unique cx’ E C:(d) (since dC’(&) = 0 and by Proposition 1). Conversely, if 

o? E C:(d) then da’ is basic; therefore H;(d) 2~ C:(d) since CA(&) = 0. But one 

has canonically C:(d) = YA(&Lie). 0 
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This proves of course Theorem 1, but it is worth noticing that in the above proof 

there is also a computation of the &cohomology modulo d of Y. 

4. Sketch of another approach: Connection with the Lie algebra cohomology 

There is another way to study the basic cohomology of d which connects it with 

the Lie algebra cohomology of &Lie: It is to study the spectral sequence corresponding 

to the filtration of the differential algebra C(d) associated to the operation i of the 

Lie algebra &Lie in the differential algebra C(d) [5]. This filtration .9 is defined by 

FP(C”(&)) = (0 E C”(&)liA, . . . i&-p+,(O) = 0, VA, E d} 

for 0 < p < n and .9p(C(&)) = &,FJ’(Cn(&)). 

One has 

YO(C(&S!)) = C(d), F”Ip(C(&)) LP(C(d)) c Fp+qc(d)) 

and 

dFp(C(d)) c Fp(C(d)), 

i.e. 9 is a (decreasing) filtration of graded differential algebra. To such a filtration 

corresponds a convergent spectral sequence (Er,d,),.E~, where E,. = @p,yEM Epq is 

a bigraded algebra and d, is a homogeneous differential on E, of bidegree (r, 1 - r). 

The triviality of the cohomology of C(d) (i.e. Proposition 1) implies that Ekq = 0 

for (p,q) # (O,O) and E, ‘,’ = K. The spectral sequence starts with the graded space 

EO associated to the filtration, i.e. Et4 = ~“lp(CP+q(~))/~~+‘(Cp+4(I$1)) and do is 

induced by the differential d of C(d). If CL) E 9p(CJ’+q(&)) then iA, . . . i,+w is in 

Ci(&) and is antisymmetric in Ai,...,A,. Therefore @,,...,A,) H iA, .‘.i~~o is a 

q-cochain of the Lie algebra &Lie with values in C$&) for the representation A H LA 

of the Lie algebra di_ie in C,(S). This defines a linear map of FJ’(CJ’+q(&‘)) in 

the space of q-cochains of &Lie with values in C;(d). The kernel of this map is, by 

definition, Ff’+l(CP+q(&)). In our case, it is straightforward to show that this map 

is surjective, i.e. that E, ‘,’ identifies with the space of q-cochains of the Lie algebra 

&Lie with values in the space C!(d) of horizontal elements of CP(&) and that then, 

do coincides with the Chevalley-Eilenberg differential. Thus, El = H(Eo,do) is the 

Lie algebra cohomology of &Lie with value in Cu(@‘), Epq = H’(dLi,,CHp(&)). 

In particular, E:* IS the ordinary cohomology of &Lie (i.e. with value in the trivial 

representation in W) and E, *” is the space of invariant elements of Cm&), i.e. the 

space Cn(&) of basic elements of C(d), EC” = C;(d). Furthermore, on ETaa = 

CB(&), dl is just the differential d of C(d) restricted to C,(d). Therefore, $” 

is the basic cohomology H&J@‘) of ~2, E;’ = Hi(&). This shows that the spectral 

sequence connects the basic cohomology of ~2 to the Lie algebra cohomology of its 

underlying Lie algebra &Lie. The connection between the Lie algebra cohomology of 
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&Lie and the ad*-invariant polynomials, i.e. H&J@ in our case, is well known but an 

interest of the last approach could be to catch the primitive parts. 

Appendix: Proof of Lemma 1 

Let Yn be the group of permutations of { 1, . . . , n}. In the algebra of this group, let 

us define the antisymmetrisation operator 

Y = c E(7c)rr 
TTEY?# 

and the operators 

x(k) = c E(~b 

nG% 
n-‘(k+l)<...<n-‘(n) 

for any 1 5 k 5 n, where I denotes the signature of the permutation rc. 

Notice that 

-@(a) = -@(n-l) = 9 

and one easily shows that 

H E X(i) = e (-l)p+‘yp, 
p=l 

where yP is the permutation (l,..., p ,..., n) H (2 ,..., p, l,p+ l,..., n). 

With these definitions, one has the following result. 

Lemma.Foranyl<k<n-1, 

xx(k) = k*(k) + s(k+l). 

Proof. 

p=l nE% 
n-l(k+l)<...<n-‘(.) 

c (-1)JJ+‘&(7r)yp7c. 
p=k+l nE4 

n-‘(k+l)<...<n-‘(?I) 

Now, define rc’ = yprc E Y,,; one has .a(~‘) = (- 1 )P+la(rc). For p 5 k, one has 
n’-‘(q) = x-‘(q) for any k + 1 5 q < n. 
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So, in the first summation, for a fixed p, the sum over the n E Y’,, such that 

n-‘(k+l) < ... < z-‘(n) can be replaced by the sum over the z’ E Yn such that 

rc-‘(k + 1) < . . . < TC-‘(n), Thus, 

f: c (-l)p+‘E(n>yp7c = e c &(d)7c’ = kX(k). 
p=l ZEI/; p=l dE% 

n-‘(kcl)<. .<C’(“) ~‘-‘~kil)< <n’-‘(n) 

Now, for p > k + 1, one has z’-l(q) = x-‘(q - 1) for any k + 2 < q 5 p and 
n’-‘(q) = x-1 (q) for any p + 1 5 q < n. So one has only 

n’-‘(k + 2) < . . . < 7?(n), 

and in the second summation the sum over p and rt can be replaced by the sum over 

the rr’ E 9, such that n’-‘(k + 2) < . . < C1(n). Thus, 

n 

c c (-l)p+‘~(~)Yp~ = x(k+l). q 
p=k+l nE.% 

n-‘(k+l)<- -<n-‘(n) 

By induction, this lemma shows that for any 1 < k 5 n 

k-l 

p(k) = n(s - p id), 
p=o 

where we recall 2 E X(t ). 

Sofork=nandk=n-l,onehas 

n-1 

Jr(,) = ~(~ - p id) = 9, 

p=o 

n-2 

%YifCn_l) = n(x - p id) = Y. 

p=o 

Now, notice that the operators X and Y of Lemma 1 are representations of the 

operators Y? and Y above in the linear space Pm,n (in fact only in P(d)). This 

proves Lemma 1. 
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